時間:2008-05-05 16:15:00來源:dujing
圖1 OptiSlip結構繞線式異步風力發電系統框圖 [/align]
3.混合結構
為了降低變流器的成本并且能夠實現風力發電系統的寬轉速范圍運行,有文獻提出一種基于雙饋電機斬波調阻與交流勵磁控制策略多功能變流器拓撲結構,將整流器、斬波器和逆變器結合在一起,該結構的巧妙之處在于斬波器和逆變器共用了一組可控的電力電子開關,但是由于引入了四個接觸器型的受控開關,導致該結構的主回路結構復雜,很難實現同步速切換過程的過渡,而且在高于同步速運行情況下難以改善發電機的功率因數。此外,還有文獻提出了新型轉子電流混合控制的電路拓撲結構及其控制策略,該控制方法兼備交流勵磁控制和轉子斬波調阻法的優點,能顯著降低轉子變流器的硬件成本以及控制技術的復雜性,并且可以實現發電機的寬轉速范圍運行,無需在同步速點過渡,在整個允許的速度范圍內都可以進行定子輸出有功、無功功率獨立調節,同時發電機輸出功率因數可控,缺點是輸入側功率因數低,風能轉換效率低。
三、基本控制算法
交流勵磁結構即雙饋變速恒頻風力發電系統得到了非常廣泛的應用,在其發展過程中出現了很多控制策略,主要包括矢量控制、標量控制以及直接功率控制等。
1.矢量控制
德國工程師F.Blashke在上世紀七十年代提出的矢量控制原理,使得交流調速技術發生了一次質的飛躍,應用在雙饋調速上,獲得了令人振奮的動靜態性能。矢量控制的理論基礎是磁場定向原理,通過引入坐標變換,將原來復雜的雙饋電機模型等效為d-q模型的基礎上,對坐標軸的交叉耦合信號進行有效的補償,可以得到類似直流調速的效果。
雙饋系統的矢量控制結構通常將轉子交流量分解成有功分量和無功分量,并對之進行閉環控制。通常為了簡化雙饋矢量控制系統的電磁轉矩和其他矢量之間的復雜關系,需要使坐標軸定向在某個矢量上。一般的,在雙饋系統可以選擇的定向矢量為定子磁鏈、氣隙磁鏈、定子電壓以及轉子電流等。其中,比較常用的是以定子磁鏈和氣隙磁鏈為定向矢量的控制方法。
2.多標量控制
基于多標量模型的雙饋電機控制方法通過多標量模型變換電機系統到兩個獨立的線性子系統中,利用PI調節器控制定子的有功和無功。在該方案中,定義轉子轉速,定子磁鏈幅值的平方,定子磁鏈和轉子電流的叉積和點積四個標量,并根據上述四個標量電機的微分方程,在忽略定子電阻的情況下,對定子磁通做歸一化處理后,電機的有功功率以及無功功率可以解耦控制。
3.直接功率控制
矢量控制的雙饋系統結構復雜,性能受電機參數影響,受到異步電機直接轉矩控制的啟發,有的學者致力于研究變速恒頻發電系統的直接功率控制。應用在變速恒頻發電系統的直接功率控制不同于傳統的直接轉矩控制,它通過檢測定子端的量來控制轉子端的開關動作,但控制方法不使用轉子PWM電壓的積分,因此可以穩定工作在零頻率附近,而且該方法不要位置傳感器以及對參數魯棒性強。不同于矢量控制技術,直接功率控制不需要復雜的坐標變換,而是通過控制轉子磁鏈的幅值和相對于定子磁鏈位置,繼而可以通過有功功率和無功功率的PI調節器跟蹤參考值來控制發電機輸出的有功功率和無功功率。
四、其他研究熱點
除了上面提到的一些雙饋異步風力發電系統基本控制策略以外,雙饋變速恒頻異步風力發電系統還有許多研究熱點包括:
1.風力發電系統的軟并網軟解列研究
軟并網和軟解列是目前風力發電系統的一個重要部分。一般的,當電網容量比發電機的容量大得多的時候,可以不考慮發電機并網的沖擊電流,鑒于目前并網運行的發電機組已經發展到兆瓦級水平,所以必須要限制發電機在并網和解列時候的沖擊電流,做到對電網無沖擊或者沖擊最小。
2.無速度傳感器技術在雙饋異步風力發電系統應用的研究
近年,雙饋電機的無位置以及速度傳感器控制成了風力發電領域的一個重要研究方向,在雙饋異步風力發電系統中需要知道電機轉速以及位置信息,但是速度以及位置傳感器的采用提高了成本并且帶來了一些不便。理論上可以通過電機的電壓和電流實時計算出電機的轉速,從而實現無速度傳感器控制。在風力發電系統中,無傳感器控制帶來了以下優點:采用無傳感器使發電機和逆變器之間連線消除,降低了系統成本,增強了控制系統的抗干擾性和可靠性,另外可以減少了電機的軸向尺寸,降低硬件復雜性、總成本以及維護要求。
3.電網故障狀態下風力發電系統不間斷運行等方面
并網型雙饋風力發電機系統的定子繞組連接電網上,在運行過程中,各種原因引起的電網電壓波動,跌落甚至短路故障會影響發電機的不間斷運行。電網發生突然跌落時,發電機將產生較高的瞬時電磁轉矩和電磁功率,可能造成發電機系統的機械損壞或熱損壞,所以三相電網電壓突然跌落時的系統持續運行控制策略的研究是目前研究熱點。
此外,雙饋風力發電系統的頻率穩定以及無功極限方面也是目前研究的熱點。
五、QHVERT-DFIG-1500B風力發電用變流器
北京清能華福風電技術有限公司生產的適配于1.5MW級變速恒頻雙饋異步風力發電系統的QHVERT-DFIG-1500B型變頻器使用三相背靠背電壓型變流器,采用“基于雙DSP的全數字化矢量控制策略”技術對雙饋風力發電機轉子繞組進行勵磁,通過引入坐標變換,將轉子交流量分解成有功分量和無功分量,并對之進行閉環控制,從而實現對發電機有功和無功的解耦控制。其主回路如圖2所示:
[align=center]
圖2:主回路圖[/align]
QHVERT-DFIG-1500B變速恒頻雙饋異步風力發電機變流器通過對雙饋風力發電機的轉子側進行勵磁。雙饋發電機的定子側輸出與電網電壓頻率和相位相同,并且可根據需要進行有功和無功的獨立解耦控制。QHVERT-DFIG-1500B型變流器控制雙饋風力發電機實現軟并網發電,減小雙饋風力發電機的并網沖擊電流對電機和電網造成的不利影響。QHVERT-DFIG-1500B型變流器提供多種通信接口,用戶可利用這些接口方便的實現變流器與風力機系統控制器及風場遠程監控系統的集成控制。
圖3至圖5為在上海某電機廠地面實驗的試驗波形,圖中從上到下,依次為CH1-CH6,CH1為電網電流A相,流向電網為正;CH2為定子電流A相,定子繞組流出為正;CH3為轉子電流A相,變流器流出為正;CH4為整流電流A相,流入變流器為正;CH5為電網電壓BC相,(CH9)CH6為定子電壓BC相。
[align=center]
圖3:1800RPM系統并網之前波形圖 圖4:1800RPM系統滿載運行波形圖 [/align]
[align=center]
圖5:系統變速運行波形圖 [/align]
從上面的介紹可以看出,我國的變速恒頻雙饋異步風力發電系統用變流器的產業化工作正邁著堅實的步伐大踏步的前進著,這對實現兆瓦級風力發電設備的國產化有著重要而且積極的意義。
六、結束語
隨著變頻技術的蓬勃發展,變速恒頻異步發電技術特別是雙饋異步風力發電技術得以快速實用,其單機容量已經達到兆瓦級,迅速成為風電場的主力機型。近二十年來,在風力風電的變頻技術上取得了許多非常有意義的成果,我國在變頻器的產業化上也取得了很大的進展。我們相信雙饋變速恒頻風力發電技術必將在未來相當長一段時間在風電領域扮演非常重要的角色。
標簽:
傳動網版權與免責聲明:凡本網注明[來源:傳動網]的所有文字、圖片、音視和視頻文件,版權均為傳動網(www.cdcst56.com)獨家所有。如需轉載請與0755-82949061聯系。任何媒體、網站或個人轉載使用時須注明來源“傳動網”,違反者本網將追究其法律責任。
本網轉載并注明其他來源的稿件,均來自互聯網或業內投稿人士,版權屬于原版權人。轉載請保留稿件來源及作者,禁止擅自篡改,違者自負版權法律責任。
產品新聞
更多>2025-09-08
華為昇騰Atlas800iA2 910B服務器Deepsee...
2025-09-04
2025-08-06
2025-07-08
2025-06-30
2025-06-16