您現(xiàn)在的位置:
                中國(guó)傳動(dòng)網(wǎng)
                >
                技術(shù)頻道
                >
                應(yīng)用方案
                >
                圖像邊緣檢測(cè)技術(shù)在焊接環(huán)境識(shí)別中的應(yīng)用
            時(shí)間:2008-04-16 13:57:00來(lái)源:zhangting
圖1  圖像邊緣類(lèi)型[/align]
    (1)1類(lèi)邊緣。如圖1中標(biāo)為1的邊緣線,1類(lèi)邊緣為兩個(gè)不同曲面的或平面的交線,該點(diǎn)處物體表面的法線方向不連續(xù),在1類(lèi)邊緣線的兩邊,圖像的灰度值有顯著得變化。
    (2)2類(lèi)邊緣。2類(lèi)邊緣線是由材料類(lèi)型不同或顏色差異產(chǎn)生的。上圖中由兩種不同材料組成,由于它們對(duì)光的反射系數(shù)不同,使2邊緣線的兩側(cè)灰度有顯著變化。
    (3)3類(lèi)邊緣。3類(lèi)邊緣線是物體與背景的分界線。如上圖中圓柱上有兩條3類(lèi)邊緣線,一般稱(chēng)為外輪廓線。在3類(lèi)邊緣點(diǎn)上,三維物體表面的法線方向是連續(xù)的,出現(xiàn)邊緣點(diǎn)是由于從一定視角看物體時(shí),3類(lèi)邊界點(diǎn)是物體與背景的交界處。由于物體與背景在光照條件與材料反射系數(shù)等方面差異很大,因此在3類(lèi)邊緣兩側(cè),圖像的灰度也有顯著變化。圖中標(biāo)以3′的邊緣,既是物體與背景的交界處,也是物體上表面法線的不連續(xù)處,但引起它兩側(cè)灰度躍變的原因是前者。 
    (4)4類(lèi)邊緣。4是陰影引起的邊緣。由于物體表面某一部分被另一物體遮擋,使它得不到光源的照射,從而引起邊緣點(diǎn)兩側(cè)灰度值有較大的差異。
    對(duì)于焊前的接縫而言,無(wú)論是對(duì)接焊縫、帶坡口的焊縫或者搭接的焊縫都表現(xiàn)為兩個(gè)明顯的邊緣,對(duì)搭接而言可以看作是邊緣的重疊。而對(duì)于焊接熔池表現(xiàn)為一個(gè)明顯的邊緣輪廓,對(duì)應(yīng)于熔池形狀。同時(shí)焊接環(huán)境較為復(fù)雜,比如焊件表面的不一致性(劃痕、氧化色、標(biāo)記、油污等等),又如弧光的干擾。對(duì)于像鋁這樣的強(qiáng)反射工件,還存在光的反射,焊槍等的倒影問(wèn)題,使得識(shí)別異常困難。分析焊縫和熔池的這些特點(diǎn),可以看出焊接環(huán)境的邊緣包括上述的2,3,4類(lèi)邊緣。在選用和提出新的邊緣提取算法時(shí)必須考慮這些因素的影響。
2.常用的邊緣提取算法及其在焊接環(huán)境識(shí)別中的適用性
    如前所述,邊緣提取的方法粗略可以分為梯度檢測(cè)法(如Roberts算子、Prewitt算子和Sobel算子等)、二階導(dǎo)數(shù)零交叉點(diǎn)檢測(cè)法、統(tǒng)計(jì)型方法、小波多尺度檢測(cè)、模糊數(shù)學(xué)方法,還有數(shù)學(xué)形態(tài)學(xué)、神經(jīng)網(wǎng)絡(luò)、邊緣流法等檢測(cè)方法。這么多算法只有針對(duì)特定的應(yīng)用領(lǐng)域時(shí)才能說(shuō)哪種更好。1986年Canny[8]總結(jié)了以往理論和實(shí)踐的成果,提出邊緣檢測(cè)Canny三準(zhǔn)則:好的檢測(cè)結(jié)果,好的定位還有對(duì)單一邊緣低重復(fù)響應(yīng),并給出了他們的數(shù)學(xué)表達(dá)式。下面結(jié)合焊接環(huán)境的特點(diǎn),分析現(xiàn)有的邊緣提取算法對(duì)焊接環(huán)境識(shí)別的適用性。 
2.1微分算子
2.1.1梯度算子
    梯度對(duì)應(yīng)于一階導(dǎo)數(shù),相應(yīng)的梯度算子就對(duì)應(yīng)于一階導(dǎo)數(shù)算子。對(duì)于一個(gè)連續(xù)函數(shù)f(x,y),其在(x,y)處的梯度定義如下:



是以 f(m,n)為中心的鄰點(diǎn)的集合,可是4或8鄰點(diǎn)
可直接以作為邊緣象素灰度,也可把的象素作為邊緣。
    梯度算子和 Laplacian 算子對(duì)噪聲都比較敏感。對(duì)此可以在做邊緣提取前先用鄰域平均法做平滑處理,同時(shí)可以用高斯形二維低通濾波器對(duì)圖像進(jìn)行濾波,然后再作Laplacian邊緣提取。這就是常用的Laplacian-Gauss算子。 在焊接工件上有很多噪聲點(diǎn),而微分運(yùn)算對(duì)那些孤立的噪聲點(diǎn)有“擴(kuò)散”作用,尤其是Laplacian算子,不但擴(kuò)散而且強(qiáng)度顯著增大。所以在微分算子檢測(cè)邊緣之前最好清除噪聲。而對(duì)于對(duì)接的焊縫,當(dāng)間隙較小時(shí)其邊緣特征顯示為細(xì)直線,微分運(yùn)算后會(huì)變寬。由于梯度算子可以檢測(cè)圖像邊緣的方向,更適合于焊接環(huán)境的識(shí)別。 2.2 小波多尺度邊緣檢測(cè)方法[9][10]
    小波變換可以通俗的理解為:將原始的信號(hào)和小波函數(shù)的左端進(jìn)行比較,求出兩個(gè)函數(shù)的相似性系數(shù),然后將小波函數(shù)右移一個(gè)小波函數(shù)的距離,進(jìn)行比較和計(jì)算,直至完成整個(gè)信號(hào)的運(yùn)算;這樣得到一個(gè)尺度下的小波系數(shù)。將小波函數(shù)膨脹,重復(fù)上述過(guò)程,得到一系列尺度下的小波系數(shù)。圖像中的突變點(diǎn)是分析圖像時(shí)的關(guān)鍵特征,通常就是感興趣的邊緣特征。邊緣檢測(cè)就是從小波系數(shù)的變化梯度方向上找到階躍的突變點(diǎn)。為了檢測(cè)到圖像中大目標(biāo)結(jié)構(gòu)的邊緣和細(xì)節(jié)特征,研究者提出了多尺度邊緣檢測(cè)的概念,即在大尺度上檢測(cè)出目標(biāo)的大邊緣,在小尺度上檢測(cè)到目標(biāo)細(xì)節(jié)。相關(guān)理論可參見(jiàn)文獻(xiàn)[9][10]。該方法是當(dāng)前圖像處理中的熱點(diǎn)之一,具有較好的發(fā)展前途。已有文獻(xiàn)將其應(yīng)用到焊接熔池圖像的處理中[10]。
    對(duì)焊接環(huán)境來(lái)講,該方法具有較好的適應(yīng)性,可以對(duì)工件或者熔池從大尺度上搜索出目標(biāo),然后提取出感興趣的細(xì)節(jié)。
2.3 數(shù)學(xué)形態(tài)學(xué)方法[11]
    數(shù)學(xué)形態(tài)學(xué)是研究數(shù)字影像形態(tài)結(jié)構(gòu)特征與快速并行處理方法的理論,是通過(guò)對(duì)目標(biāo)影像的形態(tài)變換實(shí)現(xiàn)結(jié)構(gòu)分析和特征提取的目的。數(shù)學(xué)形態(tài)學(xué)以圖像的形態(tài)特征為研究對(duì)象,它的主要內(nèi)容是設(shè)計(jì)一整套概念、變換和算法,用來(lái)描述圖像的基本特征和基本結(jié)構(gòu),也就是描述圖像中元素與元素、部分與部分間的關(guān)系。圖像中對(duì)象及圖像特征直接取決于形狀,數(shù)學(xué)形態(tài)學(xué)的目的是在時(shí)域空間研究形狀,所以形態(tài)學(xué)適用于圖像處理。形態(tài)運(yùn)算中的腐蝕、膨脹、開(kāi)、閉是基于集合的運(yùn)算。在這些運(yùn)算中結(jié)構(gòu)元素具有非常關(guān)鍵的作用,它調(diào)整圖像特征變換的幾何結(jié)構(gòu)。借助形態(tài)運(yùn)算可以引入圖像邊緣檢測(cè)算子。數(shù)學(xué)形態(tài)學(xué)中的膨脹和腐蝕運(yùn)算有著很直觀的幾何背景,它們可以使被處理的圖像在一定方向上增厚或減薄,原圖像與這兩種運(yùn)算的差則可以用作全方位的邊緣檢測(cè),即或便可檢出圖像的邊緣。此外,形態(tài)學(xué)方法還可以通過(guò)自適應(yīng)方法對(duì)所獲圖像邊緣進(jìn)行修正,逐步調(diào)整結(jié)構(gòu)元素窗口尺寸,達(dá)到有效增強(qiáng)模糊邊緣并適當(dāng)消除噪聲影響的目的。
2.4亞象素邊緣檢測(cè)算法
    上述這些邊緣檢測(cè)算法都是在象素級(jí)上進(jìn)行,亞象素邊緣檢測(cè)是指將邊緣附近的象素分解,從而精確確定邊緣所在。亞象素邊緣檢測(cè)將圖像數(shù)據(jù)映射到有9個(gè)參數(shù)構(gòu)成的Hilbert空間,從而確定邊緣參數(shù)。Ghosal和Mehrotal首次提出了利用Zernike矩(Zernike Moments ZMs)來(lái)檢測(cè)亞象素邊緣,在他們的算法中對(duì)邊緣建立了理想的階躍灰度模型,通過(guò)計(jì)算圖像的三個(gè)不同階次的ZMs,把理想階躍灰度模型的4個(gè)參數(shù)映射到三個(gè)ZMs中,再通過(guò)這三個(gè)ZMs來(lái)計(jì)算出邊緣所在直線的參數(shù),從而確定出邊緣的亞象素級(jí)坐標(biāo)。李金泉[12]對(duì)ZMs算法進(jìn)行了較為深入的研究,并指出其不足之處并提出了相應(yīng)的改進(jìn)算法,將其應(yīng)用于焊縫識(shí)別中,檢測(cè)的邊緣具有精度高、自細(xì)化邊緣和抗干擾性強(qiáng)等優(yōu)點(diǎn)。
3.結(jié)論
    大多數(shù)焊縫的方向變化不會(huì)太劇烈,都是連續(xù)的直線或者曲線。在局部小的范圍內(nèi)可以看作是兩條平行的直線。因此在焊接環(huán)境識(shí)別時(shí)可以通過(guò)尋找直線的方法來(lái)檢測(cè)焊縫。在這些已有算法中,梯度算子可以檢測(cè)焊縫的邊緣同時(shí)還可以對(duì)方向進(jìn)行預(yù)測(cè),這樣實(shí)時(shí)圖像處理的同時(shí)還可以預(yù)測(cè)焊縫前進(jìn)的方向,較適合于焊接環(huán)境的識(shí)別。但微分算子抗干擾性差,對(duì)于復(fù)雜的焊接環(huán)境來(lái)講,不能直接拿來(lái)應(yīng)用,當(dāng)加以改進(jìn)和結(jié)合其它算法。小波多尺度、形態(tài)學(xué)邊緣檢測(cè)算法等是該領(lǐng)域研究熱點(diǎn)之一,其特點(diǎn)適合于復(fù)雜的焊接環(huán)境識(shí)別,應(yīng)加以深入研究。一些亞象素檢測(cè)算法能夠獲得更為精確的檢測(cè)結(jié)果,是提高圖像處理精確度和焊接結(jié)果的努力方向之一。邊緣檢測(cè)方法數(shù)不勝數(shù),都有其特定的適用范圍,在選用或者開(kāi)發(fā)新的算法時(shí),一定要考慮焊接本身的特 
點(diǎn)。
標(biāo)簽:
                                
                            
傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來(lái)源:傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為傳動(dòng)網(wǎng)(www.cdcst56.com)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來(lái)源“傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。
本網(wǎng)轉(zhuǎn)載并注明其他來(lái)源的稿件,均來(lái)自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來(lái)源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。
產(chǎn)品新聞
更多>「頻」實(shí)力,新上市——富士電機(jī) FRENIC...
2025-09-08
華為昇騰Atlas800iA2 910B服務(wù)器Deepsee...
2025-09-04
2025-08-06
2025-07-08
推薦專(zhuān)題
更多>